Each new term in the Fibonacci sequence is generated by adding the previous two terms. By starting with 1 and 2, the first 10 terms will be:
1, 2, 3, 5, 8, 13, 21, 34, 55, 89, …
By considering the terms in the Fibonacci sequence whose values do not exceed four million, find the sum of the even-valued terms.
题目大意:
斐波那契数列中的每一项被定义为前两项之和。从1和2开始,斐波那契数列的前十项为:
1, 2, 3, 5, 8, 13, 21, 34, 55, 89, …
考虑斐波那契数列中数值不超过4百万的项,找出这些项中值为偶数的项之和。
#include <stdio.h>
#include <string.h>
#include <ctype.h>
#include <math.h>
#define N 4000000
int a[1001];
void solve()
{
int a, b, c, n, count = 2;
a = 1, c = 0, b = 2;
n = 3;
while (c <= N) {
c = a + b;
if (n % 2 != 0) {
a = c;
} else {
b = c;
}
n++;
if (c % 2 == 0) {
count += c;
}
}
printf("%d", count);
}
int main()
{
solve();
return 0;
}
Answer:4613732
Completed on Tue, 2 Apr 2013, 06:36
Comments