工学1号馆

home

(Problem 18)Maximum path sum I

By Wu Yudong on January 15, 2017

By starting at the top of the triangle below and moving to adjacent numbers on the row below, the maximum total from top to bottom is 23.

3
7 4
2 4 6
8 5 9 3

That is, 3 + 7 + 4 + 9 = 23.

Find the maximum total from top to bottom of the triangle below:

75
95 64
17 47 82
18 35 87 10
20 04 82 47 65
19 01 23 75 03 34
88 02 77 73 07 63 67
99 65 04 28 06 16 70 92
41 41 26 56 83 40 80 70 33
41 48 72 33 47 32 37 16 94 29
53 71 44 65 25 43 91 52 97 51 14
70 11 33 28 77 73 17 78 39 68 17 57
91 71 52 38 17 14 91 43 58 50 27 29 48
63 66 04 68 89 53 67 30 73 16 69 87 40 31
04 62 98 27 23 09 70 98 73 93 38 53 60 04 23

NOTE: As there are only 16384 routes, it is possible to solve this problem by trying every route. However, Problem 67, is the same challenge with a triangle containing one-hundred rows; it cannot be solved by brute force, and requires a clever method! ;o)

根据前面的文章《寻找数字三角形最大数字之和》,可以很容易写出代码:

#include <stdio.h>
#include <string.h>
#include <ctype.h>
#include <math.h>

#define max(x,y) (x>y?x:y)

int a[15][15]={
{75},
{95, 64},
{17, 47, 82},
{18, 35, 87, 10},
{20, 04, 82, 47, 65},
{19, 01, 23, 75, 03, 34},
{88, 02, 77, 73, 07, 63, 67},
{99, 65, 04, 28, 06, 16, 70, 92},
{41, 41, 26, 56, 83, 40, 80, 70, 33},
{41, 48, 72, 33, 47, 32, 37, 16, 94, 29},
{53, 71, 44, 65, 25, 43, 91, 52, 97, 51, 14},
{70, 11, 33, 28, 77, 73, 17, 78, 39, 68, 17, 57},
{91, 71, 52, 38, 17, 14, 91, 43, 58, 50, 27, 29, 48},
{63, 66, 04, 68, 89, 53, 67, 30, 73, 16, 69, 87, 40, 31},
{04, 62, 98, 27, 23, 9, 70, 98, 73, 93, 38, 53, 60, 04, 23}
};

int main()
{
	int n, i, j, k, t;
	n = 15, t = n;
	for (i = n - 2; i >= 0; i--) {
		for (k = 0; k < t - 1; k++) {
			a[i][k] += max(a[i + 1][k], a[i + 1][k + 1]);
		}
		t--;
	}
	printf("%d\n", a[0][0]);
	return 0;
}


Answer:1074

Completed on Thu, 1 May 2014, 23:31

如果文章对您有帮助,欢迎点击下方按钮打赏作者

Comments

No comments yet.
To verify that you are human, please fill in "七"(required)